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Abstract—Object permanence, the idea that an object still
exists when not in view, is a fundamental aspect of human
cognition that typically develops in infancy. However, object
permanence is often left out of machine vision models designed
to identify objects in video. As machine vision technology
becomes more widespread, it is important to understand the
key differences between machine and human visual processing,
and how we can bridge these gaps. In order to compare object
permanence capabilities in humans and machine models, we
created a custom video dataset of objects undergoing occlusion,
including frames with partial and full occlusions. Human object
detection performance on the dataset was assessed via survey, and
compared with the SOTA object detection algorithm YOLOv3,
as well as a novel recurrence-based model we call YOLO-
LSTM. Although human performance degrades significantly
when identifying object size and location under occlusion, human
subjects almost always recognize that occluded objects still
exist, while YOLOv3 shows linearly decreasing performance
as objects become more occluded. YOLO-LSTM has a lower
accuracy overall than YOLO-v3, but demonstrates more human-
like behavior.

Index Terms—deep neural networks, object permanence, ma-
chine vision

I. INTRODUCTION

Object permanence is a fundamental, intuitive skill that
humans acquire in infancy. When a human sees a stationary
object temporarily obscured, they will continue to recognize
roughly where the object exists in space and what it is. Little
is known about the development of object permanence in
humans; although Piaget thought physical manipulation of
objects was required, other studies have shown that young
infants are able to reason about hidden objects visually [1].
Furthermore, maturation of the frontal lobe is associated with
acquiring object permanence, as young infants are able to
remember the object’s existence for longer durations [2].
However, because object recognition systems typically work
on inputs of single images — processing videos as individual
frames without memory — the problem of object permanence
through partial or full occlusion becomes more difficult to
solve.
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Tracking objects in video and dealing with temporary oc-
clusions has been a longstanding problem in machine vision,
and has thus garnered a wide variety of proposed solutions.
Many solutions focus on utilizing partial occlusions, such as
identifying when an existing object is partially occluded, and
using it as a benchmark for the location of the entire object
[3]. Although these solutions are promising for partial occlu-
sions, they ignore full occlusions entirely. The most common
solutions involve using linear and nonlinear dynamics models
— most popularly, Kalman filters — to estimate the trajectory
of objects which are occluded temporarily while in motion.
These models, however, have been shown to perform poorly
for certain situations, such as poor video quality, stationary
objects, and nonlinear object motion [4].

While existing solutions primarily focus on identifying
partially occluded objects in individual images [5], or in the
case of videos, tracking moving objects with fairly linear tra-
jectories, we focus more on an object permanence perspective,
with basic, large, moving occlusions in video frames. To this
end, we compare human and computational performance in
situations of both partial and full occlusions over stationary
objects.

Object permanence in machine vision has many implica-
tions in industry applications, most notably with the case of
autonomous vehicles. One of the biggest issues with these
autonomous driving systems is that they will encounter many
objects that may be occluded on the road, and objects that
move behind others, making it critical that these models are
able to handle occlusions and to recognize the existence of
blocked objects, even when they are not directly in view [6].

II. METHODS
A. Dataset

Our dataset consists of two parts: a pretraining image dataset
for the preliminary parts of our model, and a video dataset. The
pretraining dataset consists of 10000 320x320-pixel images
constructed using the Pillow Python library [7]. The images
contain one unoccluded object - either a circle, a square, or a
triangle - over a noisy background of small colored pixel blobs
and large black bars. Fig. 1a shows an example of a pretraining
image. For the purposes of training, the objects in question are
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Fig. 1. a) An example of an image used for pretraining, showing the primary
shape in orange with a noisy background. b) An example of a frame from the
video training dataset, containing a partially occluded object.

annotated with their label and bounding box. The side length
of the object’s square bounding box is between 10% and 33%
of the side length of the full image. These images are used to
pretrain the CNN and YOLOv3 [8].

The video training dataset consists of 1000 15-frame
320x320-pixel videos displaying a black vertical or horizontal
bar moving over - and occluding - a single stationary object, as
well as videos displaying an object moving under a stationary
black bar occlusion. The object’s bounding box is always
contained entirely within the image. Fig. 1b shows an example
of a frame from the video dataset, where a circular object
is partially occluded by a vertical occlusion. Although the
frame rate (5fps for a 3sec video) is severely limited compared
to a typical video (24 fps), the lower frame rate decreases
the amount of disk space required to store the datasets, and
ensures that both humans and the model process the videos
on a frame-by-frame basis. Each object has a bounding box
with dimension between 10% and 25% of the dimension of
the full image, and each occlusion has a width between 15%
and 33% of the image dimension. Approximately 50% of the
videos contain a frame where the object is fully occluded.
The direction of movement of the bar or image is randomized.
The ground truth annotation for these videos is the label and
bounding box for the object - including occluded portions - in
each frame; these annotations are generated automatically as
a part of the image and video creation process in Python. The
velocity of the occlusions is about 23 pixels/frame (1/14th
of the image dimension) in either the horizontal or vertical
direction. Object velocity is on average 23 pixels/frame in all
directions.

B. Human Experiment

The stimuli for the human experiment consisted of the
aforementioned dataset videos, as well as screenshots from
those videos at varying amounts of object occlusion. It was
expected that manipulating the percentage of object occlusion
would impact the accuracy of bounding box identification.

Our experiment was conducted on Amazon Mechanical
Turk (MTurk) as well as a Google Form emailed to the
MIT undergraduate community via dormitory mailing lists.
Each participant was presented with a comprehension test
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Fig. 2. Example of video frame with a partially occluded object and 23x23
point-grid overlay used in human surveys.

followed by six trials. Subjects were provided instructions
and necessary information to complete the task (regarding
object permanence, minimum bounding boxes, etc). Each trial
consisted of the participant watching a video from the dataset
and identifying the object from a list of labels. The participant
then saw a still image of the occluded object overlaid with a
23x23 grid of points (Fig. 2) and was asked to identify the
four points in the grid that made up the vertices of a box that
most closely contained the full object (simulating a bounding
box), including parts which may be occluded. The six trials
included a variety of amounts of occlusion, ranging from 10%
to 100%. The initial comprehension test consisted of three
questions asking the participants to identify an object from
an image, to identify a minimum bounding box from several
options, and to correctly identify the vertices of a bounding
box from a grid of points. The comprehension test was used
to ensure participants understood the task, as well as to filter
out random responses. Between MTurk and the MIT survey,
251 participants were recruited.

C. Computational Experiment

1) Model Overview: The most important aspects of object
permanence are the memory that an object continues to exist
even when out of sight, and the ability to extrapolate the ob-
ject’s current location from past locations. Thus, we designed a
model with these memory and extrapolation features in mind,
using a recurrent structure to retain historical information
for predicting the bounding box and label of the object at
each frame of the video. The recurrent layers receive two
streams of spatial information: a general representation of the
major features in each video frame, and an estimation of the
bounding box and label for each frame without historical input.
The bounding box and label estimate provide a jumping-off
point for the final output prediction, and the general frame
features provide supportive information about each frame that
inform any deviations from the estimated output. To generate
the frame features, we chose to use convolutional layers, which
are widely used for this purpose in image processing. We also
chose YOLOV3 - a state of the art object detection algorithm -
for the output estimations, and LSTM - which has been shown
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Fig. 3. Structure of the YOLO-LSTM model. Video frames are fed sequen-
tially into pre-trained YOLO-v3 and convolutional layers, the outputs of which
are concatenated and passed through an LSTM to produce the final image
annotations for each frame.

YOLO-v3

to be effective for processing sequences and retaining long-
term historical information - for the recurrent structure.

Our computational model (Fig. 3) is inspired by existing
work [9] on object tracking and occlusion handling in video
which supports the effectiveness of recurrent structures in
video object tracking. The full model consists of three parts:
CNN, YOLOV3, and LSTM. The CNN is trained to classify
the objects in the images, and is used to extract an informative
feature vector from images similar to those used in our video
dataset. YOLOV3 is trained to identify the bounding box
and label of the object in images, and outputs the predicted
annotation vector containing the label and bounding box of
the object detected in the image with the highest confidence.
If no object is detected in the image, YOLOV3 outputs an
annotation vector of zeros. For the video dataset, the feature
vector from the CNN and the annotation vector from YOLOv3
are concatenated to form a vector representation of each
frame in a video, and the vectors are passed into the LSTM
sequentially in single-video sequences of frames with the
combined annotations of the CNN and YOLOv3. The LSTM
outputs a corresponding final sequence of vectors containing
a label and bounding box for each frame.

In order to make the architecture more efficient, the CNN
and YOLOV3 are first trained on the pretraining image dataset,
which contains background noise but no object occlusions.
The video frames are then passed through both the trained
CNN and YOLOV3 individually to generate sequences of
representative vectors used to train the LSTM. The model was
implemented in PyTorch, and all computations were performed
on a Tesla K80 GPU via Google Colab.

2) CNN Details: The CNN takes 3-channel RGB image
inputs, and consists of 4 max-pooled 2D convolutional layers,
followed by 3 fully-connected layers. The max pooling win-
dow is 2x2, and the convolutional layers have kernel size 5
with output channels 16, 32, 64, 64 respectively. The fully-
connected layers have output size 512, 64, 3 respectively,
with the last layer representing the number of classes in our
data. ReLU is used as the activation function for all of the
convolutional and fully-connected layers, but the output layer
has a linear activation. Because the network is performing
strictly single-class classification, we use a cross-entropy loss
function. After pretraining, we draw the feature vector from

the second-to-last fully-connected layer in the CNN, resulting
in a feature vector of size 64.

The CNN was trained for 15 epochs on our 10000-image
pretraining dataset, with a batch size of 64. The optimizer was
basic SGD, with a 0.001 learning rate and 0.9 momentum. This
training resulted in a classification loss of 0.03.

3) YOLOv3 Details: We used an available open-source
implementation of YOLOv3, specifically YOLOv3-Tiny [8].
This smaller version of YOLOv3 is much more lightweight,
and since there are only 3 classes in our dataset, it provides
similar performance as regular YOLOv3. For this part, we
started off with weights that were trained on the MSCOCO
database. The YOLOv3-Tiny model was then trained on our
pretraining data with 16 epochs of 500 iterations each, and
these new weights were saved. The video frames were then
passed through the trained model to produce the predicted
annotations for our objects.

In many of the video frames, YOLOv3 detected zero
or multiple objects. Because YOLO-LSTM is designed to
exclusively handle single object detection, we represented
zero detection as a vector of zeros and used only the object
detected by YOLOvV3 with the greatest confidence in each
frame. This resulted in a processed output consisting of a
one-hot vector representing the object label, and a 4-element
vector representing the center coordinates and dimensions of
the bounding box (X, y, w, h).

4) LSTM Details: The LSTM takes inputs of size 72 (the
concatenated outputs of the CNN and YOLOv3) and has 2
hidden layers of size 512. The hidden layers are followed by a
fully-connected layer corresponding to each output. The model
outputs two vectors: one of size 3 representing the object
classification and the other of size 4 representing the bounding
box. We implemented a custom loss function to deal with the
two different pieces of this output. For the object classification,
we used cross entropy loss (CE), which is commonly used in
single-class classification. For the bounding box localization,
we used root mean squared error (RMSE) on the bounding
box vector, a standard regression loss function. Because the
bounding box vector is represented as proportions of the full
image size within the range [0, 1], the RMSE tends to be
minimized in comparison to the classification loss, and the
model may be biased towards optimizing the bounding box
vector alone. Thus, we add a multiplier 5 to the RMSE before
summing the two losses to get the final value. The value of
the multiplier (in this case, 5 = 5 was determined via cross-
validation.

Loss = CE(label) + 8« RMSE((z,y,w,h)) (1)

The LSTM was trained for 1000 epochs on our 1000-video
training dataset, with a batch size of 1, representing one video
as a sequence of 15 frames per iteration. We used an Adam
optimizer with learning rate 0.001.



III. RESULTS
A. Human Experiment

We evaluated human accuracy for the bounding boxes
by comparing the vertices provided by participants to the
ground truth, which was determined manually using the same
point grid. Object localization accuracy was evaluated using
the IOU (intersection-over-union) metric. Object identification
accuracy was calculated by comparing the number of correct
responses to the total number of responses. Of the 251 total
responses, 215 remained after filtering out participants who
incorrectly answered the comprehension test or incorrectly
identified the object for more than half of the trials. Bounding
box vertices were sorted into one of four categories based
on whether the bounding box was correct, cut off part of
the object, was too large, or was incorrect or ineligible. The
‘cuts off object’ category includes responses in which the
occluded part of the object was neglected as well as responses
in which the presence of the occlusion was acknowledged, but
the bounding box provided was not large enough. Incorrect or
ineligible responses were defined as responses which did not
provide coordinates that formed a box or coordinates that did
not contain the object at all.

Fig. 4 shows the results of this analysis (based on the
data from Table 1). Evidently, the percentage of accurate
bounding box annotation remains relatively stagnant occlusion
but experiences a significant drop in accuracy upwards of 83%.

As mentioned before, bounding box accuracy across the
various categories was evaluated using the IOU metric. Fig. 5
shows the average IOU across participants at various amounts
of occlusion. The quality of bounding box annotation remains
relatively stagnant with a significant drop in accuracy when
occlusion is upwards of 83%.

To evaluate the object identification accuracy, percentages
were calculated as the number of correct identifications over
the total number of eligible responses. Table 2 conveys these

TABLE I
PROPORTION OF SURVEY RESPONSES IN EACH MISTAKE CATEGORY
% Occluded | Correct | Cut off object | Too big | Incorrect
10% 75.81% 13.02% 8.37% 2.79%
26% 66.51% 21.40% 11.16% 0.93%
53% 82.79% 10.23% 6.05% 0.93%
83% 76.28% 12.09% 0.47% 11.16%
95% 13.02% 48.84% 29.30% 8.84%
100% 6.51% 70.70% 6.04% 16.74%
TABLE 11

PROPORTION OF SURVEY RESPONSES WITH CORRECT OBJECT LABEL

Occlusion Amount | Correct ID
10% occluded 97.67%
26% occluded 97.67%
53% occluded 97.67%
83% occluded 98.60%
95% occluded 98.14%
100% occluded 95.81%
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Fig. 4. Proportion of responses falling in each mistake category for varying
amounts of object occlusion.
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Fig. 5. Average IOU of valid human survey responses for different amounts
of occlusion.

results. Object identification accuracy and bounding box ac-
curacy have a positive correlation, according to Pearson’s
correlation coefficient (r = .59).

B. Computational Experiment - YOLOv3 Intermediate Data

In order to demonstrate the existing occlusion-handling
power of YOLOvV3, we collected intermediate data from the
first half of our network. Individual frames from the video
dataset were run through the trained YOLOv3 model to
evaluate its object recognition performance. Similar to the
evaluation of the human data, the performance of the mode
on object localization was evaluated using the IOU metric,
and performance for object classification was evaluated with
a simple accuracy.

As we can see in Fig. 6, the IOU of the model has a
negative linear relationship with the percent of the object that
is occluded, unlike the sharp dropoff in accuracy seen in the
human data. From examples of YOLOv3 outputs (Fig. 9), we
can see that this relationship is a direct result of the bounding
box capturing only the unoccluded portions of each object.
This graph was generated by binning ranges of occlusion
percentage and averaging all of the IOU values associated with
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Fig. 6. Average IOU of bounding boxes outputted by YOLO-v3 alone for
different amounts of occlusion.

Average YOLO-v3 label accuracy with different amounts of occlusion
10

08

o
o

o
>

label accuracy

0.2

0.0

0 20 40 60 80 100
% object occluded

Fig. 7. Proportion of objects labeled correctly by YOLO-v3 alone for varying
amounts of occlusion.

those occlusions (e.g. the IOU at 40% occlusion is the average
of occlusions in the range [30%, 50%)).

Fig. 7 uses the same binning method to show that label
accuracy (correctly identifying the object in the frame) also
drops off to zero as % occlusion rises to 100, but not in a
linear fashion. Errors also include if no object is recognized
in the frame. This is expected behavior from a model that can
only process single images.

Fig. 8 also uses the same binning method, this time showing
the proportion of cases where YOLOv3 fails to detect an
object in the image entirely. While YOLOv3 can successfully
recognize that an object is in the image when the object
is up to 60% occluded, there is a sharp dropoff starting at
80% occlusion. Of the total 15000 frames that made up the
video dataset, only 14128 had objects that were recognized by
YOLOvV3. With YOLO-LSTM, we hope to mitigate this effect.

Fig. 9a shows an example of a YOLOvV3 error when the
object is mostly occluded. As shown here, YOLO does not
recognize that the object is under the occlusion, and most of
the predicted bounding box lies outside of the object itself.
However, in this case the object was recognized correctly.

Fig. 9b shows an example of an incorrectly identified object
with an inaccurate bounding box predicted by YOLOV3. This
bounding box is approximately cut off where the occlusion
meets the object. This is also an interesting example because
YOLOV3 predicted the shape as a triangle.
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Fig. 8. Proportion of objects which are successfully detected by YOLO-v3
in images with varying amounts of occlusion.
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Fig. 9. Examples of common mistakes made by YOLO-v3 in detecting
occluded objects. Predicted bounding boxes are shown in white. a) Minimal
overlap between bounding box and square object; bounding box does not
overlap with the occlusion. b) Bounding box around non-occluded portion of
circular object; minimal overlap with occlusion. ¢) No object detected (full
occlusion).

Fig. 9c shows a case for which YOLOv3 makes no pre-
diction. This means that YOLOvV3 does not recognize that the
object has been passed through under the occlusion. YOLOv3
usually returns nothing for this prediction, but the pretrained
model was modified to return all zeroes for these cases.

C. Computational Experiment - YOLO-LSTM Final Data

We evaluated YOLO-LSTM using a 500-video test dataset
generated using the same method and parameters as the
training data, and compared the performance of YOLOv3 by
itself and the combined YOLO-LSTM model. The training and
test datasets had no overlapping items. The greatest points of
interest are the average IOU and label accuracy for varying
amounts of occlusion.

We can see from Fig. 10 that although YOLO- LSTM has,
on average, a lower IOU than YOLOvV3 alone, YOLO-LSTM
performs far better at higher levels of occlusion. However,
YOLO-LSTM often outputs bounding boxes that are too large
or offset from the ground truth, resulting in an IOU of just
0.57 even with no occlusions. Qualitatively, the shape of the
IOU curve for YOLO-LSTM is much more similar to the
shape of the human IOU curve, and does not mirror the
linear decrease seen with YOLOv3 alone. Although YOLO-
LSTM makes some YOLO-like errors (Fig. 12) with partial
occlusions, it tends to make more human-like errors with full
occlusion (Fig. 13).



Average Model IOU with different amounts of occlusion

0.8 4

0.6

ou

0.4 4

0.2 {

0.0

T T T T T T
o 20 40 60 80 100
% object occluded

Fig. 10. Average IOU of bounding boxes produced by humans, YOLO-v3,
and YOLO-LSTM for different amounts of occlusion.
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Fig. 11. Proportion of objects labeled correctly by humans, YOLO-v3, and
YOLO-LSTM for varying amounts of occlusion.

Fig. 11 demonstrates that YOLO-LSTM has a similar
label accuracy as YOLO-v3 from 0-40% occlusion, and
surpasses YOLO-v3 at higher levels of object occlusion. How-
ever, it is important to note that the model still makes YOLO-
like labeling errors for partially occluded frames, and drops
to 33% accuracy - the same as random chance - at 100%
occlusion.

Fig. 12 and Fig. 13 provide examples of common types
of errors that YOLO-LSTM makes when the object is under
partial and full occlusion. The first and last frames in both fig-
ures represent a low-occlusion scenario, and when compared
to Fig. 9a, we can see that both YOLO-LSTM and YOLOv3
make oversized bounding boxes centered farther away from the
occlusion than the center of the object. However, in most of
the frames, YOLO-LSTM bounding boxes in occlusion con-
ditions generally overlap with the occlusion, implying some
understanding that the object is not fully in view. By contrast,
YOLOV3 never significantly overlaps the bounding box with
the occlusion. YOLO-LSTM also makes very humanlike errors
when the object is fully occluded (the third frame in Fig. 12
and Fig. 13). Similarly to human results, YOLO-LSTM does
not accurately identify the exact location of a fully-occluded
object, but does place the bounding box over the occlusion.

n

Fig. 12. 5 frames of a vertical occlusion passing over a square object, with
bounding boxes defined by YOLO-LSTM in white.
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Fig. 13. 5 frames of a circular object passing under a horizontal occlusion,
with bounding boxes defined by YOLO-LSTM in white.

The model retains information that the object continues to
exist, and recognizes that the object is occluded.

IV. DISCUSSION

We expected to see very high accuracy for the bound-
ing box task in the behavioral experiment given that object
permanence is acquired in infancy. Therefore, the bounding
box accuracy results were rather surprising; one may expect
a decline in accuracy with increasing amounts of occlusion
given the nature of the task, but such significant decline was
not expected. Object identification accuracy also proved to be
quite high, despite a slight decline in accuracy in the full
occlusion condition. Because the objects were basic shapes
and subjects were provided the three possible label choices,
high identification accuracy was expected.

Although the low bounding box accuracy was not expected
in the full occlusion condition, one should note the importance
of the number of responses. Out of the 215 responses, only 36
participants provided a bounding box that did not include the
object or did not provide a bounding box at all. This pattern
of responses indicates that participants understand object per-
manence, but had trouble identifying the exact location of the
minimum bounding box (Fig. 14). This pattern is also evident
in the 95% occlusion case.

The lower than expected accuracy across all conditions
can be attributed to possible confounds in the experiment
in comparison to more natural situations. For example, the
artificial nature of our occlusions could have led to suspicions
of further video editing. The method of identifying vertices
of a bounding box out of a grid may also have led to higher
error rates than if participants were allowed to draw their own
bounding box. There also exists the possibility that participants
misunderstood or misread the task, for example counting the
occlusion as a shape or neglecting the occluded portions of the
objects. For the purposes of this study, the human experiment
was designed to work in a simple, text-based format which
could easily be shared with a wide audience across a variety of
different platforms (in this case, primarily MIT undergraduates
located worldwide). In the future, it would be interesting to
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Fig. 14. The 4 most popular bounding box responses (accounting for 33% of
all responses) provided by survey participants in the fully occluded condition,
shown on a) the occlusion, and b) the true object with occlusion removed.

replicate this experiment with a more sophisticated design
which allows participants to actively draw a bounding box.

The results of this model are promising, but lack frame-by-
frame accuracy for object localization, particularly for states
where the object is unoccluded. There are many potential ways
in which this problem could be mitigated. For example, due
to storage and processing limitations, the dataset and model
used for this study were kept relatively small and simple -
with a small feature vector, a training set of 1000 videos,
and few hidden layers. YOLO-LSTM could potentially show
improvement simply by increasing the number of videos in the
training dataset, and increasing the number of hidden layers
and the size of the feature vector from the CNN. Another area
of improvement is the loss function; the current loss function
performs a simple regression on the bounding box vector (X, y,
w, h), which is not representative of the actual metrics we use
to evaluate bounding box correctness. This could be improved
by incorporating the spatial overlap concept of IOU into the
loss function itself. The network could also benefit from more
informative general frame features; the CNN currently extracts
image features with the sole purpose of classification, which
may not create features that are particularly applicable to
object localization, and would not extend to images containing
multiple objects. Future improvements on this model could use
an alternative implementation of the CNN that also considers
object detection, potentially even sourcing features from the
internal layers of YOLOV3.

The results of the human experiment and YOLO-LSTM also
indicate a more nuanced interpretation of human object perma-
nence. Simply comparing predicted and actual bounding boxes
- particularly when the object is heavily occluded - may not
fully represent the human understanding of object permanence.
For example, IOU is the same for two different cases: complete
failure to detect an object, and non-overlapping bounding
boxes, but there is a notable difference between misidentifying
the exact location of an object and thinking it has disappeared
entirely. Our experiments show that humans do not retain
very accurate information about the exact size and location
of an object when it is occluded, but they do know that the
object continues to exist behind the occlusion, and tend to

select a bounding box over the occlusion. Even if a human
participant completely misses the object’s location, predicting
that the object is somewhere behind the occlusion is still a
stronger indication of object permanence than predicting that
the object has disappeared. This demonstrates a critical flaw
in the IOU metric, and indicates that it may be important to
develop more humanlike metrics for object detection in the
future. The computational results from YOLOv3 demonstrate
a great potential for improvement in video object detection
when the information given to the neural net is expanded
past individual frames. As discussed above, YOLO-LSTM
makes an interesting combination of YOLO-like and human-
like mistakes. It may be worthwhile in the future to perform
a deeper analysis of the types of errors made by humans and
YOLO-LSTM to see what conditions lead it to output more
human-like versus YOLO-like results.

Future improvements could also include integrating the
knowledge we have of the development of human object per-
manence and the visual system into how we develop training
and testing datasets, how we train the models, and how the
different components of the models interact with each other.
This is a challenge however, because unlike other human visual
processes, object permanence is not fully understood. This
model, as well as other object detection models with recurrent
elements [9][10], demonstrates that recurrent connections may
be part of the answer.
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