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Abstract

Generative adversarial networks (GANs) learn to gener-
ate new data based on the data they were trained on. In this
work, we train a DCGAN to generate images from scratch.
We also use style transfer methods to modify existing im-
ages to generate a new image. However, there is no one
true way to evaluate a generated image. As such, we use
an Inception network to give each generated image an In-
ception score (IS). The inception score calculates a score
for the network based on image quality and diversity. Once
we have the inception scores, we survey humans to give a
score for each image based on the same criteria. We then
compare the computed score to the human responses across
our generation methods and image classes and identify cor-
relation between human satisfaction with images and their
inception score.

1. Introduction
Currently, there is no objective way to measure or eval-

uate human surprisal, or how “surprised” someone would
be by looking at something, for generative images. Many
different strategies exist to score the performance of gener-
ative images, one of the most popular being the Inception
Score [5, 7]. A non-automated popular strategy is to have
humans annotate images with aspects that surprised them or
made the most sense to them.

For our project, we wanted to see if any correlation ex-
isted between automated, computed scores like the Incep-
tion Score or the conditional probabilities assigned to im-
ages when they are classified by the Inception model and
human-given scores found from surveying humans on gen-
erated images. Within this question, we wanted to see how
such a correlation would vary between different image gen-
eration techniques like Generative Adversarial Networks
(GANs) [3] or applying a style transfer to an image [2]. We
also wanted to see how the correlation may vary between
indoor generated scenes and outdoor generated scenes.

To explore these questions, we created two GANs: one
that generates bedroom images, and one that generates

mountain images. We also applied a style transfer to im-
ages of bedrooms and images of mountains. We then found
the Inception Scores for various combinations of these sets
of images, as well as the conditional probabilities for each
image of being either a bedroom or a mountain. Once we
had all of our computer-given data, we surveyed 235 hu-
mans to collect our human-data on our indoor vs. outdoor
and style transfer vs. GAN image comparisons.

With our approach, we hope to find correlations that will
allow us to predict some form of human surprisal for our
various image generation techniques, or find that no such
correlations exist with the computer-provided metrics we
have chosen to explore.

2. Related Work

2.1. Places365 Dataset

We chose to train our GANs on classes from the
Places365 dataset [8]. We chose this dataset because we
wanted to generate scenes rather than just objects so we
could compare scene recognition between humans and com-
puter scores. The dataset also has a wide variety of both
indoor and outdoor classes we could choose from. This
dataset has a wide variety of image types in every image
class, including a mix of natural everyday scenes and more
professionally done/standard stock photo images.

2.2. GANs and DCGAN

A Generative Adversarial Network (GAN) is a type of
neural network designed by Goodfellow et al. [3] where
there are effectively two networks ”competing” in a zero
sum game (where one network must win and another must
lose) to generate sets of objects that have the same statis-
tics and features as the original training set provided. The
two networks in a GAN are a generator and a discriminator.
The discriminator is a network that tries to distinguish be-
tween the training data and the images created by the gener-
ator. The generator effectively learns by trying to have the
discriminator label it’s output as a real image. GANs are
widely used to be able to generate more data for additional
training, simulating scenarios, or even in animation. In this
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project we will use two GAN to first create images of an in-
door scene and then of an outdoor scene. These images will
then be used to measure how surprised humans see them as
and how ”unnatural” they are considered to be.

In our paper, we are using a specific type of GAN called
a Deep Convolutional GAN (DCGAN). The main differ-
ence here is that a DCGAN is specifically made to generate
images and is composed of mostly convolutional layers.

2.3. Style Transfer

We will be adapting our style transfer code from pset 5 of
this class to generate a set of images from existing images,
rather than from scratch like our GAN. We chose to include
style transfer as a way to compare the Inception scores and
human responses for images generated from scratch and im-
ages generated from existing images. This can also provide
additional insight into what is considering to be ”unnatu-
ral” in the view of human subjects. For example, it may
be worth exploring if something with an artistic style but a
scene that makes sense is considered to be more natural than
a picture created by a GAN that maybe looks normal but has
furniture placement that doesn’t make sense to a human.

Our pset 5 code follows the Neural-style Algorithm de-
scribed by Gatys et al. [2]. The Neural-Style algorithm
takes in a style image, such as a painting or a texture
image, and an input image that will have the style ap-
plied to it, and outputs the style-transferred image. The
input image is first reconstructed from the conv1 1,
conv2 1, conv3 1, conv4 1, and conv5 1 layers
from the VGG-Network. The style image is then recon-
structed from subsets of the conv1 1 through conv5 1
layers of the CNN. The output image is then synthesized by
matching the reconstructed input image (content represen-
tation) with the reconstructed style image (style representa-
tion).

2.4. Inception Model and Inception Score

We will be using the Inception v3 model described by
Szedgedy et al. [5] to calculate the conditional label dis-
tribution P (y|x) [7]. The pretrained inception v3 model
included with pytorch is trained on ImageNet classes, so
Inception scores calculated from this model would have a
range [1,1000] since the model supports 1,000 classes. A
higher score indicates that the generated set of images has
a diverse set of images that distinctly look like the classes.
Once we have the conditional label distribution for a set of
generated images, given to us by the Inception v3 model,
we can calculate the Inception score for the set using the
equations outlined by Salimans et al. [7].

We get the conditional label distribution P (y|x) by run-
ning a set of images through the Inception model. We then
pull the value P (y) from the distribution so we can cal-
culate the Kullback-Leibler Divergence (KL-Divergence).

The KL-Divergence is found as:
KLD = P (y|x) ∗ [log(P (y|x))− log(P (y))]

for each class for each image in the set. We then sum all of
the KL-Divergence values for the classes, and average that
over the number of images in the set:

average KLD = sum(KLD)/number of images
Then, we undo the logs we did in the KL-Divergence by
setting the average to an exponential to get the inception
score:

inception score = exp(average KLD)

2.5. Human Perception of Generated Images

Since one of our goals was to measure human surprisal
on the different generated images, we looked into previ-
ous work on gauging human perception of various images.
As mentioned in our introduction, one of the most popu-
lar techniques for evaluating generative images is by having
humans annotate images in something like an Amazon Me-
chanical Turk study [5]. This technique allows participants
to mark what aspects of the image look the most or least
realistic to them, and this information could be used to fine
tune the generative technique to best improve the realism of
the images it generates. However, we wanted to explore cor-
relations between human surprisal and automatic computer-
given scores, so we decided to not survey for image anno-
tations. Rather, we chose to have humans mimic the con-
ditional probability classification of the Inception model as
well as give their own ranking of how natural each image
was.

Previous studies into human perception [1, 6] found that
the gist of an image is more prominent in human perception
than specific objects and that for images of a lower resolu-
tion, holistic processing of the image becomes more promi-
nent. As such, we decided to generate images of scenes
rather than objects so that our human survey participants
would be asked to recognize and score the images more
holistically as the scene rather than a single, specific object.

3. Methods

3.1. Dataset

We chose to train one GAN on the Bedroom class from
the Places365 dataset [8] as our indoor scene and another
GAN on the Mountain class as our outdoor scene. Each
class had 5000 total images in the training set and 100 in
the validation set, so we divided those 5,100 images into
75% training images (3,825 images), 15% test images (765
images), and 10% validation images (510 images). We used
this split to ensure that there were enough images for each
class to be trained on for all of our models, but also enough
to get an accurate representation during the validation and
testing phases.
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3.2. DCGAN Image Generation

We created two GANs, one that was trained on the moun-
tain class from the Places365 dataset and generated moun-
tain images, and one that was trained on the bedroom class
from the Places365 dataset and generated bedroom images.

For our generator, we used 5 convolutional 2D transpose
layers. Layers 1-4 were each followed by a batch normal-
ization layer (with the size of the previous layer’s output)
and a ReLU layer. All of the convolutional layers used
no bias. We then had one final convolutional 2D transpose
layer followed by a tanh as our output layer.

• The first convolutional 2D transpose layer has 100 in-
put channels, 512 output channels, a kernel size of 4,
stride of 1, and no padding.

• The second convolutional 2D transpose layer has 512
input channels, 256 output channels, kernel size of 4,
stride of 2, and zero padding size of 1.

• The third convolutional 2D transpose layer has 256 in-
put channels, 128 output channels, kernel size of 4,
stride of 2, and zero padding size of 1.

• The fourth convolutional 2D transpose layer has 128
input channels, 64 output channels, kernel size of 4,
stride of 2, and zero padding size of 1.

• The final convolutional 2D transpose layer has 64 input
channels, 3 output channels (one for each RGB chan-
nel), kernel size of 4, stride of 2, and zero padding size
of 1. This was followed by a Tanh activation function
layer.

For our discriminator, we had 5 convolution 2D layers
with no bias. Layers 2-4 were followed by a batch normal-
ization 2d layer (with the size of previous layer’s output)
and a leaky ReLU layer with a negative slope value of 0.2.
Each convolution 2D layer is as follows:

• The first layer has 3 input channels (one for each RGB
channel), 64 output channels, a kernel of size 4, a stride
of 2, and a zero padding size of 1.

• The second layer has 64 input channels, 128 output
channels, a kernel of size 4, a stride of 2, and a zero
padding size of 1.

• The third layer has 128 input channels, 256 output
channels, a kernel of size 4, a stride of 2, and a zero
padding size of 1.

• The fourth layer has 256 input channels, 512 output
channels, a kernel of size 4, a stride of 2, and a zero
padding size of 1.

• The fifth layer has 512 input channels, 1 output chan-
nels, a kernel of size 4, a stride of 1, and no padding.

For each GAN, we trained it for 700 epochs with a learn-
ing rate of 0.0002. We used an Adam optimizer [4] with a
beta1 value of 0.5 and a beta2 value of 0.9999. The loss that
was used was a Binary Cross Entropy Loss. We stopped
training each GAN once the generator was not able to de-
crease in loss in a way comparable to the discriminator. We
used a low learning rate to ensure that none of the errors
in an epoch were too influential, and this also caused us to
have a high number of epochs. We used Binary Cross En-
tropy loss since the discriminator is effectively classifying
between two classes (real vs generated).

Each GAN generated 64, 64x64 images, as right now
GANs can typically only make up to 128x128 sized images,
and we wanted to balance between image quality/size and
the ability for the GAN to produce images that looked sim-
ilar to their class with limited resources.

3.3. Style Transfer Images

For our style transfer images, we implemented the
Neural-Style algorithm as described by Gatys et al. in
“A Neural Algorithm of Artistic Style” [2]. For our code,
we altered the PyTorch tutorial “Neural Transfer Using Py-
Torch” written by Alexis Jacq that we followed in this class’
pset 5.

We input a “style” image and a set of images we want to
transfer the style to. We then output the set of images with
the given style integrated into them.

For our style image, we chose Vincent Van Gogh’s The
Starry Night (1889) as his distinct brush stroke style and
the color scheme of this particular piece are very famil-
iar and recognizable to most people. We tested other fa-
mous art pieces like Pablo Picasso’s The Weeping Woman
(1937), Leonardo da Vinci’s Vitruvian Man (1490), and a
piece from Claude Monet’s Water Lilies series (1920-1926),
but found that Starry Night gave us the best range of condi-
tional probabilities for our images while maintaining both
the image appearance and artistic style.

We wanted to have a consistent image source throughout
the project, so we chose our sets of images to apply the
style transfer to randomly from the test set of our dataset
we trained our GANs on. We chose 15 images from the
bedroom class test set and 15 images from the mountain
class test set.

As mentioned in section 2.4, the Neural-Style algorithm
reconstructs the input image from the different conv layers
of the VGG-Network. We chose to reconstruct our images
using the conv5 layer of the network to preserve more of the
image content in the style transfer rather than using a higher
conv layer and losing image content in favor of adding artis-
tic style. We found that the conv1 layer kept the best balance
of image content and image style for our intended purpose.
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3.4. Inception Model and Score

Initially, we planned on using the pretrained Inception
v3 model to evaluate our bedroom and mountain GAN and
style transfer images, but we decided that the [1,1000] in-
ception score range the pretrained model gave us would not
be representative of our images since we only have two
classes. So, we retrained the Inception v3 model on our bed-
room and mountain classes using the same training dataset
that the GANs were trained on.

We retrained the pretrained model on our two classes us-
ing the following parameters: two epochs, the SGD Opti-
mizer, Cross Entropy loss, batch size of 64, learning rate
of 0.001, and momentum of 0.9. We only used two epochs
since we only had two classes and wanted to avoid over-
training the pretrained model. The learning rate was 0.001
because we only needed the model to recognize two new
classes as the model was already pretrained.

After retraining the Inception model, our inception score
range became [1,2] since it was retrained on two classes
and each image could only be classified as a bedroom or
a mountain. An Inception score closer to 2 means the set
of images being scored had a near-equal representation of
bedroom and mountain images and that the model had high
probabilities of each image being either a mountain or a
bedroom. Conversely, an Inception score closer to 1 means
that the set of images being scored could lack diversity (e.g.
the set was only of bedrooms or the set was only of moun-
tains) or the images could have low probabilities of being
either a mountain or a bedroom (e.g. the model could think
an image has a near equal probability of being a mountain
or a bedroom).

We created a variety of sets to have Inception scores that
are representative of different aspects of our project. We
created a set of all 128 GAN generated images (64 bedroom
images and 64 mountain images) to score our GANs. We
created a set of all 30 style transfer generated images (15
bedroom images and 15 mountain images) to score our style
transfer generation.

For our human survey, we created three sets of images
in four categories, for a total of twelve sets of images. The
four categories were: only style transfer images, only GAN
images, style transfer bedroom images and GAN mountain
images, and GAN bedroom images and style transfer im-
ages. Each set had two bedroom images and two moun-
tain images. The sets were created using images with high
(above 0.95), medium (roughly 0.8), and near-equal (near
0.5) probabilities of being a mountain or a bedroom such
that we could have a set with a high Inception score, a
medium Inception score, and a low Inception score.

3.5. Human Subject Surveys

We wanted to gather as much comparative human data as
possible, so we designed four surveys that correlated with

our four image categories and sets as listed in section 3.4:

1. only style transfer images

2. only GAN images

3. style transfer bedroom images and GAN mountain im-
ages

4. GAN bedroom images and style transfer mountain im-
ages

Each survey had three sections with four images each,
for a total of twelve images per survey. Two of the images
in each section were of bedrooms, and the other two images
were of mountains. The three sections correlated to the set
in that category that had a high Inception score, medium
Inception score, and a low Inception score.

For example, the third survey (style transfer bedroom im-
ages and GAN mountain images) had three sections that had
two style transfer bedroom images and two GAN mountain
images each. Appendix A further explains how the images
were distributed among the four surveys.

For each individual image, we asked:

1. How natural does the image look? On a scale of 1-10,
1 being “very unnatural” and 10 being “very natural”

2. How much does the image look like a bedroom or a
mountain? On a scale of 1-10, 1 being “bedroom” and
10 being “mountain”

For each section of four images, we asked participants to
rank the four images from most to least natural.

Since we wanted to measure surprisal, we defined “nat-
ural” at the beginning of each survey to be “something you
easily recognize without objects or sections that you would
consider to be odd, surprising, or inconsistent with the im-
age.” We asked participants to measure on a scale how much
each image looked like a bedroom or mountain to mimic the
classification our retrained Inception v3 model did on each
image. We asked participants to rank the images from most
to least natural in addition to their natural scores for each
image in order to see how comparison affected their idea of
“natural”.

3.6. Data Analysis

Overall, we had a few key categories we wanted to com-
pare data in. First, we wanted to compare the retrained
Inception v3 model conditional probabilities with human
scores of how much each image looked like either a bed-
room or a mountain in order to see which most accurately
classified the images. Second, we wanted to compare data
for indoor images against outdoor images to see which class
performed better for humans and the retrained Inception
v3 model. Third, we wanted to compare GAN generated
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images against our style transfer images to see which gen-
eration technique performed better for humans and the re-
trained Inception v3 model. Finally, we wanted to measure
human surprisal for each type of image to see which images
were the most and least natural as well as the most accurate.

4. Results

(a) gan bedroom 4 (b) gan bedroom 15

(c) gan bedroom 25 (d) gan bedroom 43

(e) gan bedroom 50 (f) gan bedroom 62

Figure 1: GAN Bedroom Images

4.1. GAN Image Reception

We generated 64 images from our GAN trained on the
bedroom class, and 64 images from our GAN trained on
the mountain class. Six of these bedroom images that we

(a) gan mountain 11 (b) gan mountain 21

(c) gan mountain 22 (d) gan mountain 37

(e) gan mountain 41 (f) gan mountain 61

Figure 2: GAN Mountain Images

used in our survey are in Figure 1, and six of these moun-
tain images that we also used in our survey are in Figure 2.
Running our Inception score code on all 128 GAN images
we generated, we got an Inception score of 1.3716205, in
the range [1,2].

For our second survey of all GAN images, our high
Inception score set of images had an Inception score of
1.8755617, our medium Inception score set had a score of
1.33302, and our low Inception score set had a score of
1.0380573. Appendix A lists which images from Figures
1 and 2 were used for survey 2.

The graph “Section 2: Human vs. Inception P(correct
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class)” [Figure 3a] graphs the probability the retrained In-
ception model gave each image for the correct class the im-
age is against the average human probability computed from
the survey results. Comparing these results to the y = x
line of equality, we see that about half of the images per-
form better with humans than the retrained Inception model,
while the other half underperform with humans. Specifi-
cally, four of the six bedroom images had a higher probabil-
ity of being classified as a bedroom with humans than with
the Inception model, and five of the six mountain images
had a higher probability of being classified as a mountain
with the Inception model than with humans.

The “Section 2: ‘Natural’ Scores Histogram” [Figure
3b] is a frequency histogram of the average “natural” score
given to each image by humans in the survey. The bins are
left-closed, so the ‘4’ bin contains the continuous numbers
[4,5). This distribution shows that mountain images gener-
ated by the GAN appeared more “natural” to survey partic-
ipants than bedroom images as mountain images have a bin
range [4,7] while bedroom images have a bin range [3,4].

4.2. Style Transfer Image Reception

We generated 15 bedroom images and 15 mountain im-
ages using our style transfer code. Six of these bedroom
images that we used in our survey are in Figure 4, and six
of these mountain images that we also used in our survey
are in Figure 5. Running our Inception score code on all 30
of our style transfer images, we got an Inception score of
1.3192803 in the range [1,2].

For our first survey of all style transfer images, our high
Inception score set of images had an Inception score of
1.7898717, our medium Inception score set had a score of
1.2647859, and our low Inception score set had a score of
1.0060046. Appendix A lists which images from Figures 4
and 5 were used for survey 2.

The graph “Section 1: Human vs. Inception P(correct
class)” [Figure 6a] graphs the probability the retrained In-
ception model gave each image for the correct class the im-
age is against the average human probability computed from
the survey results. Comparing these results to the y = x line
of equality, we see that ten out of twelve of the images were
given higher probabilities of being the correct class by hu-
mans than the Inception model. Overall, for style transfer
images, humans were more certain in their classifications
for both classes than the retrained Inception model.

The “Section 1: ‘Natural’ Scores Histogram” [Figure
6b] is a frequency histogram of the average “natural” score
given to each image in the section by humans in the survey.
The bins are left-closed, so the ‘4’ bin contains the continu-
ous numbers [4,5). This distribution gives mountain images
an even distribution across the bin range [5,7] and bedroom
images an almost normal distribution across the bin range
[6,8]. Overall, humans found style transfer bedrooms to be

(a) Section 2: Human vs. Inception P(correct class) scatter plot

(b) Section 2: ”Natural” Scores Histogram

Figure 3: Section 2 Graphs

slightly more natural than style transfer mountains, but not
by much.

4.3. Comparison of GAN and Style Transfer Images

Our third survey compared style transfer bedroom im-
ages with GAN mountain images. Our high Inception score
set had a score of 1.8774519, our medium Inception score
set had a score of 1.3349577, and our low Inception score
set had a score of 1.0455266.

The graph “Section 3: Human vs Inception P(correct
class)” [Figure 7a] graphs the probability that the retrained
Inception model gave each image for the correct class that
the image is against the average human probability com-
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(a) starry b1 (b) starry b4

(c) starry b5 (d) starry b8

(e) starry b12 (f) starry b13

Figure 4: Style Transfer Bedroom Images

puter from the survey results. Comparing these results to the
y = x line of equality, we see that humans outperformed the
Inception model on all of style transfer bedroom images, but
the Inception model outperformed humans on all but one of
the GAN mountain images.

The graph “Section 3: ‘Natural’ Scores Histogram” [Fig-
ure 7b] is a frequency histogram of the average “natural”
score given to each image in the section by humans in the
survey. The bins are left-closed, so the ‘4’ bin contains the
continuous numbers [4,5). The distribution shows that hu-
mans found the style transfer bedroom images significantly
more natural than the GAN mountain images, as the style
transfer bedroom images were roughly evenly spread be-
tween the bin range [7,8] and the GAN mountain images
were spread between the bins [3,6] with a right skew. The
two distributions have no overlap, showing that the style
transfer bedroom images were consistently rated more nat-
ural than the GAN mountain images.

Our fourth survey compared GAN bedroom images with

(a) starry m1 (b) starry m4

(c) starry m5 (d) starry m9

(e) starry m10 (f) starry m14

Figure 5: Style Transfer Mountain Images

style transfer mountain images. Our high Inception score
set had a score of 1.7880352, our medium Inception score
set had a score of 1.2630899, and our low Inception score
set had a score of 1.0035154.

The graph “Section 4: Human vs Inception P(correct
class” [Figure 8a] graphs the probability that the retrained
Inception model gave each image for the correct class that
the image is against the average human probability com-
puter from the survey results. Comparing these results to the
y = x line of equality, we see that humans outperformed the
Inception model on four of six of the style transfer mountain
images, and two of the GAN bedroom images. Humans and
the Inception model performed equally on two of the GAN
bedroom images. The Inception model outperformed hu-
mans on two of the GAN bedroom images and two of the
style transfer mountain images. Overall, humans performed
better than the Inception model, but especially performed
better with the style transfer images.

The graph “Section 4: ‘Natural’ Scores Histogram” [Fig-
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(a) Section 1: Human vs. Inception P(correct class) scatter plot

(b) Section 1: ”Natural” Scores Histogram

Figure 6: Section 1 Graphs

ure 8b] is a frequency histogram of the average “natural”
score given to each image in the section by humans in the
survey. The bins are left-closed, so the ‘4’ bin contains
the continuous numbers [4,5). The distribution once again
shows style transfer images significantly and consistently
outperforming GAN images as the two distributions have
no overlap. The style transfer mountain images cover the
bin range [7,9] and the GAN bedroom images cover the
bin range [2,4], showing that style transfer mountain images
were considered very natural while GAN bedroom images
were considered very unnatural.

Looking further into how comparing style transfer im-
ages with GAN images affected human perception of “nat-
ural”, we computed the difference in the natural score and

(a) Section 3: Human vs. Inception P(correct class) scatter plot

(b) Section 3: ”Natural” Scores Histogram

Figure 7: Section 3 Graphs

the probabilities given by humans for Section 1 (all style
transfer) minus Section 3 (style transfer bedrooms and GAN
mountains) and Section 4 (GAN bedrooms and style trans-
fer mountains) as will as Section 2 (all GAN images) minus
Section 3 and Section 4. Figure 9a computes these delta val-
ues for style transfer images, and shows that style transfer
images were consistently ranked as more “natural” when
given in a survey with GAN images than only with other
style transfer images. The probability assigned to the cor-
rect classification has no significant change when given in a
survey of all style transfer images or a combination of style
transfer and GAN images.

Figure 9b computes the same delta values for GAN im-
ages, and shows that GAN images are consistently ranked
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(a) Section 4: Human vs. Inception P(correct class) scatter plot

(b) Section 4: ”Natural” Scores Histogram

Figure 8: Section 4 Graphs

as more natural when given in a survey of only GAN im-
ages rather than a survey of both GAN and style transfer
images. This is consistent with the findings in Figure 9a.
Once again, the probability assigned to the correct classifi-
cation has no significant change when given in a survey of
all GAN images or a combination of style transfer and GAN
images.

4.4. Indoor vs Outdoor Scene Recognition

In Section 1, Figure 6a shows humans generally outper-
forming the Inception model for both indoor and outdoor
style transfer images. Figure 6b shows humans ranking in-
door and outdoor style transfer images as roughly the same

(a) Delta: Style transfer alone - style transfer and GAN

(b) Delta: GAN alone - GAN and style transfer

Figure 9: Delta Tables

amount of “natural”.
In Section 2, Figure 3a shows humans outperforming

the Inception model for indoor GAN images, but the In-
ception model outperforming humans for outdoor GAN im-
ages. However, humans ranked outdoor GAN images as
more natural than indoor GAN images in Figure 3b. So, in
this case, we see that how much an image looks like some-
thing is not correlated to how “natural” it looks to someone
in the GAN only case.

In Section 3, Figure 7a shows humans outperforming the
Inception model on all indoor style transfer images, but the
Inception model outperforming on almost all outdoor GAN
images. In Figure 7b, humans ranked the style transfer in-
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door images as more natural, so in this case we see that the
images that looked more like an object were consistently
seen as more “natural”.

In Section 4, Figure 8a shows humans outperforming the
Inception model on two-thirds of the outdoor style transfer
images, and performing the same as or better than the In-
ception model on two-thirds of the indoor GAN images. In
Figure 8b, humans ranked the style transfer outdoor images
as more natural than the indoor GAN images, so we also see
the case here where images that looked more like an object
were consistently seen as more “natural.

As the delta tables in Figure 9 showed, the comparison
between style transfer and GAN images has the most impact
on whether something is considered “natural” rather than
an indoor or outdoor scene. Only in Section 2 when we
compared GAN indoor and outdoor images did we see a
consistent result that outdoor GAN images appeared more
“natural” than indoor GAN images.

5. Conclusions
In the case of probability performance, we found that hu-

mans generally performed better at giving a higher proba-
bility to the correct class than the Inception model for style
transfer images, while the Inception model generally out-
performed humans for GAN images.

In measuring human surprisal through our “natural”
score, we found that when comparing only GAN images,
outdoor scenes were considered more natural. However,
when comparing GAN and style transfer images, style
transfer images were always considered more natural than
GAN images regardless of if the scene was indoors or out-
doors.

Since we gave surveys with sets of images with varying
Inception scores, we wanted to see if a correlation existed
between sets with high Inception scores and high “natural”
scores, but found that the biggest indicator of “natural” was
when style transfer images were compared with GAN im-
ages.

We also found that for the cases in comparing style trans-
fer with GAN images, the human probability assigned to an
image is a good indicator of its “natural” ranking, but not in
the case of only GAN images.

6. Future Work
One idea for future work would be to train the GAN and

Inception models on more classes to get more variety of in-
door and outdoor scenes to better look into that correlation.
We could also apply more styles to images to see if style
transfer images are always ranked as more “natural” than
GAN images regardless of the style applied. Similarly, we
could change our conv5 style transfer images to conv1 to
see if images with less of the image content preserved and

more of the artistic style integrated still outperform GAN
images in the “natural” rankings.

We could also apply the same style transfer to GAN im-
ages and compare those to the original GAN images to see
if style transfer GAN images would be ranked more or less
“natural” than the original GAN images. Finally, after fine
tuning the GAN more, we could compare the GAN and the
style transfer images to real images from the training set to
see if either generative technique could be considered more
“natural” than a real image.

7. Contribution Statement
In this project my contributions consisted of helping to

find the dataset, creating and training the DCGAN models,
retraining the inception model, helping to design the human
study, and helping to write the paper.
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Appendix

A. Survey Sections

1: all style transfer 2: all GAN 3: style transfer bedroom,
GAN mountain

4: GAN bedroom, style
transfer mountain

High
Inception
Score

starry b5, 4c gan bedroom 50, 1e starry b5, 4c gan bedroom 50, 1e
starry b12, 4e gan bedroom 62, 1f starry b12, 4e gan bedroom 62, 1f
starry m4, 5b gan mountain 11, 2a gan mountain 11, 2a starry m4, 5b
starry m5, 5c gan mountain 41, 2e gan mountain 41, 2e starry m5, 5c

Medium
Inception
Score

starry b8, 4d gan bedroom 4, 1a starry b8, 4d gan bedroom 4, 1a
starry b13, 4f gan bedroom 25, 1c starry b13, 4f gan bedroom 25, 1c
starry m1, 5a gan mountain 21, 2b gan mountain 21, 2b starry m1, 5a
starry m9, 5d gan mountain 22, 2c gan mountain 22, 2c starry m9, 5d

Low
Inception
Score

starry b1, 4a gan bedroom 15, 1b starry b1, 4a gan bedroom 15, 1b
starry b4, 4b gan bedroom 43, 1d starry b4, 4b gan bedroom 43, 1d
starry m10, 5e gan mountain 37, 2d gan mountain 37, 2d starry m10, 5e
starry m14, 5f gan mountain 61, 2f gan mountain 61, 2f starry m14, 5f

.
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B. Exact Survey Results

Figure 10: Section 1 Survey Data

Figure 11: Section 2 Survey Data

Figure 12: Section 3 Survey Data

Figure 13: Section 4 Survey Data
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